mca_daq program

Hideaki Otsu

Revised on 2005.01.20 for version 1.6.0 revised on 2003.09.12, originally written on 2003.08.31.

1 Introduction

このプログラムは、クリアパルス ADC CP11xx シリーズ (以降 CP11xx) を IBM PC/AT 互換 機から制御し、データを収集するためのものである。CP11xx は 8–13 bit (256–8192 channel)の 分解能をもつ Wilkinson タイプの Analog to Digital Converter (ADC) である。知りうる限り次 のタイプがあり、分解能、制御方法にばらつきはあるが基本的な性能、制御方法については同等 である。1 イベントについての波高情報をデジタル化し、ストローブの間に出力するタイプのも ので、内部にメモリなどは配置されていない。

タイプ	出力チャンネル	AD 変換率
(名称)	bit 数 (Ch.)	(内部)bit/10V
CP1102	10(1024)	12?
CP1125	10(1024)	12
CP1114	12(4096)	18
CP1114A	13(8192)	18

この ADC は Interface 社 IBX-2752C 32bit デジタル入出力ボード (ISA) もしくは、PCI-2752C(PCI) ボード (以降 2752C) をもちいて PC より制御される。2752C は入力 32 bit、出力 32 bit、制御入出力それぞれ 1 系統の汎用ボードであり、このうち入力 16bit と出力 4bit 、制御入力 が CP11xx の背面コネクタを経由して接続される。詳細については付録参照のこと。

制御、データ収集は PC/AT 機に乗せられた PC/UNIX である Linux 上から行われる。プロ グラムは大別して、デバイスドライバ (mca_dd)、データ収集プログラム (mca_driver)、表示プ ログラム (mca_daq.wish) の3組からなる。デバイスドライバは、ハードウェア割り込みによっ てプログラムされているため、データ収集によって、kernel(OS) が占有されることはない。デー タ収集プログラムは表示プログラムに隠される形で実装されている。原理的には単体プログラム として動作可能である。表示プログラムは Tcl/Tk ツールとそのサブシステムである BLT を用 いた GUI によるものである。収集データを横軸にチャンネル、縦軸にカウント数のヒストグラム で表示を擬似リアルタイムで行う。表示自身は非常に限られた機能しか提供されていない。収集 したデータはアスキー形式にて出力される。出力ファイルは GNUPLOT に代表される強力な表 示/解析プログラムにて随時加工することが可能である。

2 Usage

2.1 起動

画面上の mca_daq アイコン をクリックする、あるいはコマンドライン上から次のように 入力する。

g01:> mca_daq

すると、図1のような画面が表示される。ここで、緑色のボタン Init をクリックする。

この動作により、表示プログラムが起動される。実際は、表示プログラム起動の前にユーザの 意識しない形でデバイスドライバのインストールとデータ収集プログラムの起動が行われる。こ のプログラムのことを以降 mca_daq プログラムと呼ぶ。複数の表示プログラムの作動もサポー トされており、その場合はデバイスドライバのインストールとデータ収集プログラムの起動はマ スクされ行われない。このプログラムのことを以降 mca_disp プログラムと呼ぶ。この場合は、 Window 上のタイトルバーに"MCA CP11xx DISP"と表示される。(また、mca_disp は原理的に 読み込みができないので、Load が黄色表示になる。)

意図せずに mca_disp プログラムを開いてしまった場合で、mca_daq を動かしたい場合には、 mca_kill を実行する。詳しくは 2.7 節を参照すること。これで解決しない場合には、巻末に記載 してあるメールアドレスまで問い合わせをしてください。

正常に初期化されると、図1左のようにコマンド一覧が表示される。一番上のカラムには、ホ ストネームが水色のベースの上に表示される。これは、画面のハードコピーをした際にどのホス ト PC から出力されたかを認識するためである。

Fig. 1: 起動画面。Init ボタンをもちいて初期化する。初期化が正常に行われると左側がコマンド 一覧に変化する。

2.2 データの収集

緑色のボタン Start をクリックするとデータの収集を開始する。データ収集中の様子を図2に 示す。データの収集を開始すると、コマンド一覧のボタンの色が変化する。データ収集中は赤い ボタン Stop および、緑色のスケールの変更ボタンのみが利用可能である。利用不可のボタンは 黄色に変化している。

赤いボタン Stop をクリックするとデータ収集を停止する。停止すると、 Reset 、 Save 、 Print 、 Load 、 Quit の各ボタンが緑に変化し操作可能となる。

Fig. 2: データ収集中の画面。利用可能なボタンは停止の Stop およびスケール変更のボタンのみ である。

2.3 データの表示

収集したデータは画面右に横軸に ADC のチャンネル、縦軸に頻度が取られ、ヒストグラムに 表示される。横軸は較正が可能で、較正された軸は上側に表示される。マウスをヒストグラム上 に持ってくると、十字カーソル (crosshair cursor)が表示される。収集を開始してからの延べ時間 (秒)と収集したデータの総数とが画面左のコマンド一覧の下側に表示される。収集時間は不感時 間を考慮したものが表示されるようになっている。

表示について可能な操作は次の通りである。

- 縦軸のスケールの変更。リニア、対数表示。
- ズーム表示

- データ計数の表示
- Region of Interest(ROI) 表示
- 横軸の簡易較正

縦軸は、緑色のボタンFIX をクリックすると変化する。FIX、AUTO、Log の順にト グルし、それぞれリニア固定スケール表示、リニア自動スケール表示、対数自動スケール表示に 対応する。

一部分を拡大して表示したい場合は、マウス左ボタンで拡大したい範囲を対角の2点でクリック すると(図3)、選ばれた範囲が拡大表示(ズームイン)される。この拡大表示はマウス右ボタンで 解除(ズームアウト)される。拡大表示中にスケールを変更すると、解除の際に変更されたスケー ルで表示を行おうとするため、対数表示のままズームアウトすると、下端の0が表示されないエ ラーが発生する。

Fig. 3: データの拡大表示。マウス左ボタンで対角2点を選ぶ。

データの計数は、みたいチャンネルに十字カーソルを持ってきて中ボタンをクリックすると、 そのチャンネル数と計数した個数をデータ総数の下に表示する。この表示は収集されるデータに 従って擬似リアルタイムに変化する。

興味ある範囲 (ROI) をマウス中ボタンを押したまま動かすことにより指定することができる。 範囲を指定すると、その部分のヒストグラムの色が変わり、その範囲の計数の和をコマンド一覧 の最下段に表示する。(図 4)

横軸のエネルギーへの簡易較正も可能である。キーボードのCtrl を押しながらマウス中ボタンをクリックすると、図5に示されるポップアップ画面が出てくる。ここで、チャンネルと相当

Fig. 4: ROIの指定。マウス中ボタンを押したままずらすことにより範囲を選択する。

するエネルギーを2点について入力する。その2点で線形に較正され、横軸(上)に表示される。 データの計数の横軸にもこの較正が反映される。この機能は実験の解析において非常に便利であ

🗗 📐 MCA : Calibr	ation 🔄 🔳 🔳
Channel	Energy
182	1.46083
324	2.610554
Set	Cancel

Fig. 5: 簡易較正のポップアップ画面。例では 195 チャンネルに 1.46 MeV、348 チャンネルに 2.61 MeV が相当している状況が示されている。

るが、教育上隠しておく必要があったので若干 Imaginative でないキーアサインになっている。

2.4 データの保存

データ収集を中断している状態でデータを保存することが可能である。中断状態では、<u>Save</u> ボタンが緑になっている。このボタンをクリックすると、次のようなポップアップが表示される。

Save File Name ?				
out.hist				
out.hist				
Comments ?				
Save	Set	Clear	Cancel	

ここで上の欄に保存するファイルのファイル名、下の欄にコメントを書き込み Save ボタンをク リックするとデータがファイルとして保存される。ファイル名のデフォルトは、out.hist となっ ている。

データの保存先ディレクトリは~gamma/work になっているので、各自保存ディレクトリを作成 しこの名前にシンボリックリンクするとよい。

g01:> cd ~	
g01:> mkdir work_20010901	
(g01:> mv work work.old)	#< work directory が既にある場合。
g01:> ln -s work_20010901 work	

同じファイル名のファイルが既にあると、そのファイルを .~?~ をつけたファイルに名前を変 更し、そののちファイル保存する。

保存されるファイルの形式は、アスキー形式であるので、less コマンドで中身をみることもで きるし、gnuplot などのプログラムを用いてプロットすることも容易である。

```
g01:> cd ~/work
g01:> less out.hist
1 0
2 0
3 0
4 29781
5 122659
(snip)
1023 0
1024 0
##; Save at Wed Aug 22 05:54:08 2001
##; Total Live Time 0.000000
##; Total Real Time 0.000000
##; Total Events
                     0
##; Comments : test
##; Comments :
```


Fig. 6: gnuplot による保存データの表示。そのまま plot することができる。

```
g01:> cd ~/work
g01:> gnuplot
G N U P L O T
Linux version 3.7
(snip)
Terminal type set to 'x11'
gnuplot> plot "out.hist"
```

2.5 データの再読込

保存されたデータは基本的に GNUPLOT など他のツールで読み込むことが期待されているが、 mca_daq プログラムでも読み込むことは可能である。ピークチャンネルや幅を online 整理のた めに行う際に便利である。注意すべき点は、収集データ用の領域に読み込むということである。 よって、既にその領域あるデータは失われる。

データ収集が停止している際に Load ボタンが押されると、Tk 標準のファイル選択 Window がポップアップする。開きたいファイルを選択すると、データが収集データ用の領域に読み込ま れ、それにともない画面に表示される。ヒストグラムファイルで無いファイルを選択した場合の 動作の保証はないので気をつける。

データ収集中は誤って Load ボタンが押されても動作しないようになっており、そのことを黄 色のベースで表示することにより示している。

読み込んだデータに追加してデータを収集することは可能ではあるが、その場合は収集時間が 正しく出力される保証はない。

	Open	
<u>D</u> ir	rectory:	/mnt1/home/gamma - 主
	.bash_history .bash_logout .bash_profile .bashrc .canna .cshrc .emacs	E .esd_auth E .ICEauthority E .keymap.km E .saves-19641-localhost E .saves-26350-localhost E .screenrc E .wm_style
	File <u>n</u> ame:	out.hist Open
	Files of <u>t</u> ype:	Cancel

Fig. 7: データの再読み込み、load を行った時の POP UP Window。

2.6 収集時間の設定

収集時間はスケール変換ボタンのすぐ下のエントリーボックスに値 (単位は秒)を書き込むこと によって決めることができる。空欄、および 0 はデータをとり続けることを示す。

収集時間は実際の経過時間から、イベント毎に不感となる時間を差し引いた時間を示す。不感 時間は本来ならば、イベント毎に調べ計上する必要があるが、CP11xx シリーズでは少なくとも 外部へ不感時間に相当する信号を出力することができない。よって、あらかじめ計測によって求 めた平均不感時間を用いている。不感時間は入力されるパルス高に依存しないようである。

2.7 プログラムの終了

データ収集が停止している際にQuit ボタンが押されると、データ表示プログラムが終了し、 そののちバックグラウンドで動いていたデータ収集プログラムが終了する。

バックグラウンドデータ収集プログラムが正常に終了されていない場合は、次回 mca_daq プロ グラムの起動を行っても、データ収集モードには入れず、データ表示のみを行う DISP モードで 動いてしまう。

正常に終了できなかったデータ収集プログラムは、コマンドラインから、

g01:> mca_kill

と入力することにより、強制終了させることが出来る。

3 Install

3.1 2752C カードと計算機 BIOS の設定

2752C カードに入力された信号によって計算機に割り込みを掛ける設定は次のとおり。ただし、 ここでは最近では使われなくなりつつあるパラレルポート用の IRQ=7 を占有する用に設定して いる。対応するデバイスドライバも同様の設定となっている。よって、計算機の BIOS でパラレ ルポートを disable し、かつ IRQ の割り当てを ISA only に設定する必要がある。

PCI-2752C カードの場合は、PnP 機能によって、勝手に IRQ/IOport を取得する。IRQ を share している場合の動作は不明。できるかぎり単独になるように工夫したほうがよいかも知れ ない。もちろん ISA only にはしない。

パラレルポートを用いる場合には別の設定にしておく必要がある。I/O ポートについても競合 するカードがある場合はデバイスドライバのソフトとともに変更する必要がある。

IBX-2752C の場合ののパラメータ

Parameter	Value	Switch	Results
IO port address	0x280 - 0x28F (default)	RSW1–4	occupy 0x280–0x28f
Interrupt	Sig1: IRQ 7	JP1	IRQ=7 (parallel port normally)
Interrupt Signal	$\mathrm{High} \to \mathrm{Low} \ (\mathrm{default})$	DSW1-1: ON	
	for $\overline{\text{STB1}}$	JP25 : A	

PCI-2752C の場合のデフォルトのパラメータ

Parameter	Value	Switch	Results
IO port address	0xefa0 - 0xefaf (default)		occupy 0x280–0x28f
Interrupt	PnP		IRQ=7 (parallel port normally)
Interrupt Signal	$\mathrm{High} \to \mathrm{Low}$	BASE_IO+0x0e	
	for $\overline{\text{STB1}}$	により指定	

3.2 mca_daq プログラムのインストール

プログラムのソースコードはmca_daq_?.?.?.tar.gz の形で配布される。?.?.? の部分はバー ジョンを示す。2001/08/31 の時点では、1.4.1 である。2005/01/20 の時点では、1.6.0 である。動 作に必要な環境についての注意点については、libc.so.5 ではプログラム中で segmentation fault を起こすために使用できない。基本的に lib.so.6 (glibc) 環境を用意する必要がある。

```
g01:> tar -zxvf mca_daq_1.6.0.tar.gz
g01:> ln -sf mca_daq_1.6.0 mca_daq
g01:> cd mca_daq
```

ここで、mca_dd_isaがIBX-2752Cデバイスドライバ、mca_dd_pciがPCI-2752Cデバイスド ライバ、mca_driverがデータ収集プログラム本体 (Cによる部分)、mca_scriptsがTcl/Tk およ び shell スクリプトに分けて配置されている。必要とするデバイスドライバをmca_ddに symbolic link しておく必要ある。基本的に、mca_dd.mca_driver にて make する必要がある。

```
g01:> ln -sf mca_dd_pci mca_dd
g01:> cd mca_dd
g01:> make
g01:> su
g01:> su
g01:> make install
g01:> cd ../mca_driver
g01:> make
```

mca_scripts の mca_daq と mca_daq.wish の先頭付近にファイルを展開し配置した場所を書 き込むところがあるので、この部分を適宜変更する。2752C との入出力に使用する device ファイ ルを作成する。にて make する必要がある。

g01:> cd /dev g01:> mknod ibx c 62 0

3.3 mca_daq 必要とされるプログラム

kernel は 2.4 を使用する必要がある。ただし IBX-2752C は 2.2 に対応している。2.4.20 以降 推奨。2.2.21 以降推奨。

使用するソフトウェアの環境については、tcl/tk のバージョンは 8.3.3 が強く推奨される。BLT のバージョンは 2.4u 以降である。

その他にも、usleep、convert(ImageMagick)を使用している。これらが適宜パス上に存在す る必要がある。

4 Appendix

4.1 CP11xx コネクタ仕様

CP11xx は背面に 50pin フラットコネクタを備えており、この信号線をもちいて計算機制御を 行う。信号線の持つ情報は表1の通りである。

4.2 2752C コネクタ仕様

2752C はインターフェース社の 32 入力/32 出力が可能な汎用デジタル入出力カードである。PC のインターフェースは IBX-2752C は ISA 仕様、PCI-2752C は PCI 仕様である。入出力シグナ ルは TTL オープンコレクタである。CP11xx シリーズのデータは入力 4bit、出力 16 ビット (こ れは将来増える可能性がある。)であるため、2752C ボードで十分扱うことが可能である。カー ド出力面には、96 ピンの HONDA 製コネクタ (PCR-E96LMDC、ケーブル側は PCR-E96FA、 ただしピン刻印は逆で異なっている。)がある。

CP11xx シリーズの最新モデル CP1114A では、データ出力 13bit(8192 チャンネル) が可能で あるがこれらにも対応している必要がある。よって、ADC からのデータ出力が 16 ビットとなっ ても対応できるようにセグメント 1 の入力 16 ビットをそのまま対応させてある。制御用の出力

pin #	Meaning	flow		remarks
1	Reset	CP11xx \rightarrow	PC I/F	Initialize ADC
3	ACK	<i>←</i>		Reset ADC
5	WAITE	\leftarrow		Pause Timer and DAQ
7	$\overline{\text{OE}}$	\leftarrow		Start DAQ
9	READY	\rightarrow		Data Ready to be read
11	$\overline{T_{-}REM}$	\rightarrow		Timer Remote
13	\overline{TOF}	\rightarrow		Time Over
15	$\overline{\mathrm{STOP}}$	\rightarrow		Stop
17	$\overline{\mathrm{D11}}$	\rightarrow		Data bit 11
19	$\overline{\mathrm{D10}}$	\rightarrow		Data bit 10
21	$\overline{\mathrm{D09}}$	\rightarrow		Data bit 9
23	$\overline{\mathrm{D08}}$	\rightarrow		Data bit 8
25	$\overline{\mathrm{D07}}$	\rightarrow		Data bit 7
27	$\overline{\text{D06}}$	\rightarrow		Data bit 6
29	$\overline{\mathrm{D05}}$	\rightarrow		Data bit 5
31	$\overline{\mathrm{D04}}$	\rightarrow		Data bit 4
33	$\overline{\mathrm{D03}}$	\rightarrow		Data bit 3
35	$\overline{\mathrm{D02}}$	\rightarrow		Data bit 2
37	$\overline{\mathrm{D01}}$	\rightarrow		Data bit 1
39	$\overline{\mathrm{D00}}$	\rightarrow		Data bit 0
41	NC	\rightarrow		Data bit for future
43	NC	\rightarrow		Data bit for future
45	NC	\rightarrow		Data bit for future
47	NC	\rightarrow		Data bit for future
49	NC	\rightarrow		Data bit for future

Table 1: ADC CP11xx シリーズの背面 I/O コネクタの概要。2–50 の偶数ピンは信号の RETURN として GND になっている。

3bit はセグメント2の入力に対応させてある。入力の有効ビットの調整はデバイスドライバ部分 を書き換えることによって (のみ) 対応する。

計算機への割り込みを掛けるために ADC READY 信号を I/F STB1 入力に接続してある。

4.3 制作ケーブル仕様

CAB-6402 ケーブルは 96 本全結線のケーブル A 端に本多通信工業製コネクタ PCR-E96FA が 取りつけられたものである。長さは 2 m である。ほかに、1,5,10 m のものがある。B 端は融着 されたフラット圧着可能な形状になっている。

B 端に ADC への接続のためにフラット 50 芯のコネクタを取りつけた。コネクタはバラ線圧 接用の OMRON XG5M-5033-N 2 列ソケット (コンタクト 2 個のタイプ) と横形フード カバー XG5S-5022 からなる。

ケーブルの仕様は表3に示すが、基本的に表2と同等である。

pin #	Meaning	Data Flow		ADC remarks	
1	-COM1	ADC —	PC	Signal RETURN	
2	-COM1			(18-50 && e	even)
3	IN1	\rightarrow		Data for future	47
4	IN2	\rightarrow		Data for future	45
5	IN3	\rightarrow		Data for future	43
6	IN4	\rightarrow		Data for future	41
7	IN5	\rightarrow		$\overline{\mathrm{D00}}$	39
8	IN6	\rightarrow		$\overline{\mathrm{D01}}$	37
9	IN7	\rightarrow		$\overline{\mathrm{D02}}$	35
10	IN8	\rightarrow		$\overline{\mathrm{D03}}$	33
11	IN9	\rightarrow		$\overline{\mathrm{D04}}$	31
12	IN10	\rightarrow		$\overline{\mathrm{D05}}$	29
13	IN11	\rightarrow		$\overline{\mathrm{D06}}$	27
14	IN12	\rightarrow		$\overline{\mathrm{D07}}$	25
15	IN13	\rightarrow		$\overline{\mathrm{D08}}$	23
16	IN14	\rightarrow		$\overline{\mathrm{D09}}$	21
17	IN15	\rightarrow		$\overline{\mathrm{D10}}$	19
18	IN16	\rightarrow		$\overline{\mathrm{D11}}$	17
·		•	•••		
21	FCOM			RETURN	4 10
22	$\overline{\mathrm{STB1}}$	\rightarrow		$\overline{\text{READY}}$	9
23	IR.IN1	\rightarrow			
24	$\overline{\mathrm{ACK1}}$	\leftarrow		$\overline{\mathrm{ACK}}$	3
·			•••		
29	$-\mathrm{COM2}$			RETURN	$12 \ 14 \ 16$
30	$-\mathrm{COM2}$			RETURN	
31	IN17	\rightarrow		$\overline{\mathrm{STOP}}$	15
32	IN18	\rightarrow		$\overline{T_{-}OF}$	13
33	IN19	\rightarrow		$T_{-}REM$	11
·			•••		
49	-COM3			RETURN	268
50	-COM3			RETURN	
51	OUT1	←		$\overline{\text{RESET}}$	1
52	OUT2	←		WAITE	5
53	OUT3	←		$\overline{\text{OE}}$	7
			•••		

Table 2: IBX-2752C 汎用デジタル入出力カードのピン仕様の一部抜粋と ADC への結線。詳細 は 2752C マニュアル 11 ページ、またはインターフェース社カタログページ G20-31 参照。

CP11xx	CAB6402			IBX-2752C
ADC	50 pin	Data Flow	$96 \mathrm{pin}$	I/F Card
RESET	1	~	51	OUT1
ACK	3	~~	24	$\overline{\text{ACK1}}$
WAITE	5	~~~	52	OUT2
\overline{OE}	7	~~~	53	OUT3
READY	9	\rightarrow	22	$\overline{\text{STB1}}$
$\overline{T_{REM}}$	11	\rightarrow	33	IN19
$\overline{T_{-}OF}$	13	\rightarrow	32	IN18
STOP	15	\rightarrow	31	IN17
$\overline{\mathrm{D11}}$	17	\rightarrow	18	IN16
$\overline{\mathrm{D10}}$	19	\rightarrow	17	IN15
$\overline{\mathrm{D09}}$	21	\rightarrow	16	IN14
$\overline{\mathrm{D08}}$	23	\rightarrow	15	IN13
$\overline{\text{D07}}$	25	\rightarrow	14	IN12
$\overline{\text{D06}}$	27	\rightarrow	13	IN11
$\overline{\text{D05}}$	29	\rightarrow	12	IN10
$\overline{\mathrm{D04}}$	31	\rightarrow	11	IN09
$\overline{\mathrm{D03}}$	33	\rightarrow	10	IN08
$\overline{\text{D02}}$	35	\rightarrow	09	IN07
$\overline{\mathrm{D01}}$	37	\rightarrow	08	IN06
$\overline{\mathrm{D00}}$	39	\rightarrow	07	IN05
NC	41	\rightarrow	06	IN04
NC	43	\rightarrow	05	IN03
NC	45	\rightarrow	04	IN02
NC	47	\rightarrow	03	IN01
GND	2		49(50)	-COM3
GND	4		21	-FCOM
GND	6		49(50)	-COM3
GND	8		49(50)	-COM3
GND	10		21	-FCOM
GND	12		29(30)	-COM2
GND	14		29(30)	-COM2
GND	16		29(30)	-COM2
GND	18–50 even	n —	1(2)	-COM1

Table 3: ケーブルの仕様

4.4 価格一覧

参考にまで必要となった品物および加工の価格を付記する。なお上記表はすでに 2003/09/02 時

Table 4: 価格表			
品物	取り引き会社	単価 (税抜)	備考
ADC CPxx	クリアパルス	各種カタログ値	
IBX-2752C	インターフェース	20860	アカデミックプライス
CAB6402	インターフェース	5950	アカデミックプライス
ケーブル加工	有限会社コメット (022-390-7601)	10000	

点では expire されている。ISA bus の商品である IBX-2752C は戦略からすでにアカデミックプ ライスの適用が外れている。

Table 5: 価格表

品物	取り引き会社	単価 (税抜)	備考
IBX-2752C	インターフェース	29800	アカデミックプライス適用外
PCI–2752C	インターフェース	22400	アカデミックプライス
CAB6402	インターフェース	5950	アカデミックプライス
ケーブル加工	有限会社コメット (022-390-7601)	10000	
コネクタ	OMRON		2003/09 は支給せず
XG5M-5036-N		695	極性ツメ2個タイプ
XG5S-5022	フード	106	最小ロット 10 個

4.5 不感時間の測定

IBX-2752C を用いた時の ADC および計算機によるデータ収集にかかる時間を測定した。オ シロスコープのトリガー (図上) に Shaping Amp. の Bipoler 出力を入力する。ADC コネクタ 50pin 部分にプローブを取りつけ、そのパルスをモニター (図下) した。

その時間間隔はほぼ 32 µs であった。パルス毎でばらつきが若干あるが、ほとんどのパルスは 32 µs 不感であると考えてよい。入力パルスのパルス高によるばらつきはこのスケールでは観測 されなかった。

PCI-2752C と mca_dd_pci デバイスドライバの組合せでも不感時間を測定した。この時は STB 信号も空間を経由してプローブでモニターできてしまった。この観測から、ADC のコンバージョンに 19 μ s、割り込み終了まで、29-34 μ s であることがわかる。

Fig. 8: 不感時間の測定。Shaping Amp. の Bipoler 出力をトリガーに (上) して ACK1 パルスを モニター (下) した。モニターに用いたプローブの関係で出力波形が矩形でない。時間間隔につい ては 32 μ s として問題ないようである。

Fig. 9: 不感時間の測定。PCI版。Shaping Amp. の Bipoler 出力が青、ACK1パルスがシアン。

問い合わせ等

otsu@he4.phys.tohoku.ac.jp

mca_kill の内容

```
#!/bin/sh
pid='cat /var/tmp/mca_driver.pid'
proc='ps x | grep $pid | grep mca_driver'
echo $proc
echo $pid
if [ "$proc" ];
then
   kill -9 $pid ;
fi
exit 0
```